

Machining Inconel—especially grades like Inconel 625 or 718—can yield excellent surface finishes, but it depends on the machining method, tooling, speeds/feeds, and whether a finishing pass is applied.

Typical Surface Finish Values for Inconel (Measured in Ra, μm / μin):

Machining Method	Typical Ra (μm)	Ra (μin)
Rough Turning/Milling	1.6 - 3.2	63 - 125
Semi-Finish Turning	0.8 - 1.6	32 - 63
Finish Turning (Carbide Tool)	4 - 0.8	16 - 32
Fine Grinding	0.1 - 0.4	4 - 16
Honing / Lapping	<0.05	<2

Notes for Inconel Machining:

- Inconel is notoriously tough due to its work-hardening nature and low thermal conductivity.
- To achieve Ra < 1.6 μm (63 μin), you'll often need:
 - Sharp carbide or ceramic tooling
 - Low feed rates and shallow depths of cut
 - Ample coolant or high-pressure coolant
- Finishing techniques like grinding, honing, or polishing are often used to meet aerospace or sealing surface requirements (Ra < 0.4 μm / 16 μin).
- Post-machining lapping can reach mirror finishes of 0.025 μm (1 μin) or better, especially for valves or sealing faces.

Method	Typical Ra (μm)	Typical Ra (μin)	Key Notes
As-printed (LPBF)	8 - 15	315 - 590	Depends on orientation, layer thickness, powder size.
Machined Finish (Turning/Milling)	0.4 - 1.6	16 - 63	Achievable with carbide tooling & optimized parameters.
Fine Grinding / Honing	<0.2	<8	Aerospace-grade sealing surfaces; slow & costly.
AM Solutions: Standard Vibratory Finish	3 - 5	120 - 200	Entry-level smoothing with ceramic/poly media.
AM Solutions: Wet Grinding + Polishing	0.8 - 1.5	32 - " 60	Comparable to semi-finish machining.
AM Solutions: Multi-step Process (e.g., Dry + Wet + Paste)	0.2 - 0.5	8 - 20	Achieves near-honing levels; aerospace-ready.
AM Solutions: DLyte (dry electropolishing)	0.05 - 0.1	2 - 4	Mirror-like finish; best for internal channels & fine geometries.